skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wen, Xueda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We employ matrix product states (MPS) and tensor networks to study topological properties of the space of ground states of gapped many-body systems. We focus on families of states in one spatial dimension, where each state can be represented as an injective MPS of finite bond dimension. Such states are short-range entangled ground states of gapped local Hamiltonians. To such parametrized families overX X we associate a gerbe, which generalizes the line bundle of ground states in zero-dimensional families ( in few-body quantum mechanics). The nontriviality of the gerbe is measured by a class inH^3(X, \Z), which is believed to classify one-dimensional parametrized systems. We show that when the gerbe is nontrivial, there is an obstruction to representing the family of ground states with an MPS tensor that is continuous everywhere onX X . We illustrate our construction with two examples of nontrivial parametrized systems overX=S^3 X = S 3 andX = \R P^2 ร— S^1. Finally, we sketch using tensor network methods how the construction extends to higher dimensional parametrized systems, with an example of a two-dimensional parametrized system that gives rise to a nontrivial 2-gerbe overX = S^4 X = S 4
    more » « less
  2. This paper is concerned with the physics of parametrized gapped quantum many-body systems, which can be viewed as a generalization of conventional topological phases of matter. In such systems, rather than considering a single Hamiltonian, one considers a family of Hamiltonians that depend continuously on some parameters. After discussing the notion of phases of parametrized systems, we formulate a bulk-boundary correspondence for an important bulk quantity, the Kapustin-Spodyneiko higher Berry curvature, first in one spatial dimension and then in arbitrary dimension. This clarifies the physical interpretation of the higher Berry curvature, which in one spatial dimension is a flow of (ordinary) Berry curvature. In ๐‘‘ dimensions, the higher Berry curvature is a flow of (๐‘‘โˆ’1)-dimensional higher Berry curvature. Based on this, we discuss one-dimensional systems that pump Chern number to/from spatial boundaries, resulting in anomalous boundary modes featuring isolated Weyl points. In higher dimensions, there are pumps of the analogous quantized invariants obtained by integrating the higher Berry curvature. We also discuss the consequences for parametrized systems of Kitaev's proposal that invertible phases are classified by a generalized cohomology theory, and emphasize the role of the suspension isomorphism in generating new examples of parametrized systems from known invertible phases. Finally, we present a pair of general quantum pumping constructions, based on physical pictures introduced by Kitaev, which take as input a ๐‘‘-dimensional parametrized system, and produce new (๐‘‘+1)-dimensional parametrized systems. These constructions are useful for generating examples, and we conjecture that one of the constructions realizes the suspension isomorphism in a generalized cohomology theory of invertible phases. 
    more » « less